Fractional Spin And Josephson Effect In Time-reversal-invariant Topological Superconductors

Fractional Spin And Josephson Effect In Time-reversal-invariant Topological Superconductors

Title: Fractional Spin And Josephson Effect In Time-reversal-invariant Topological Superconductors.
When: Friday, February 17, (2017), 12:00.
Place: Departamento de Física Teórica de la Materia Condensada, Facultad Ciencias, Module 5, Seminar Room (5th Floor).
Speaker: Liliana Arrachea, International Center for Advanced Studies Universidad de San Martín, Argentina.

Time reversal invariant topological superconducting (TRITOPS) wires are known to host a fractional spin hbar/4 at their ends. We investigate how this fractional spin affects the Josephson current in a TRITOPS-quantum dot-TRITOPS Josephson junction, describing the wire in a model which can be tuned between a topological and a nontopological phase. We compute the equilibrium Josephson current of the full model by continuous-time Monte Carlo simulations and interpret the results within an effective low-energy theory. We show that in the topological phase, the 0-to-pi transition is quenched via formation of a spin singlet from the quantum dot spin and the fractional spins associated with the two adjacent topological superconductors.

Print Friendly, PDF & Email