When: Wednesday, 12th February (2014), 12:00h
Place: Departamento de Física de la Materia Condensada, Facultad Ciencias, Módulo 3, Aula de Seminarios (5ª Planta).
Speaker: Prof. Trevor Douglas, Department of Chemistry, Indiana University.
Protein cages have emerged as useful platforms for synthetic manipulation with a range of applications from materials to medicine. Synthetic manipulation can impart new function, combining the best of evolution and directed synthetic design. We have developed a library of protein cage architectures, which differ in size, porosity, and stability, for synthetic manipulation. This library of cages include ferritins (and ferritin-like proteins), virus capsids, and heat shock proteins. Ferritins, derived from hyperthermophiles, are stable to temperatures above 100 ºC and are useful in the synthesis of magnetic and semiconducting nanoparticles. The unique scaffold-templated self-assembly of the bacteriophage P22 capsid has been utilized for the directed synthesis and packaging of a range of gene products as well as organic, and inorganic, polymeric materials. The use of virus capsids has resulted in a paradigm shift from the study of viruses as disease causing agents to their realization as highly useful supramolecular assemblies, which can be chemically and genetically modified. The packaging of material on the inside of the protein cages can dramatically change the physical properties of both the cage and the encapsulated cargo. We are investigating the effects of molecular crowding on encapsulated enzymes and polymers, the effects of the protein cage on the surface properties of encapsulated magnetic materials, and the influence of the encapsulated cargo on the physical properties on these composite materials. We are developing a wide range of bio-inspired composite materials that integrate protein architecture with organic and inorganic synthetic components. In particular, the use of these protein cage nano-materials as targeted therapeutic and diagnostic agents and as controlled nano-reactors will be discussed.