Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities

Influence of Quadrupolar Molecular Transitions within Plasmonic Cavities - Featured

Optical nanocavities have revolutionized the manipulation of radiative properties of molecular and semiconductor emitters. Here, we investigate the amplified photoluminescence arising from exciting a dark transition of β-carotene molecules embedded within plasmonic nanocavities. Integrating a molecular monolayer into nanoparticle-on-mirror nanostructures unveils enhancements surpassing 4 orders of magnitude in the initially light-forbidden excitation. Such pronounced enhancements transcend conventional dipolar mechanisms, underscoring the presence of alternative enhancement pathways. Notably, Fourier-plane scattering spectroscopy shows that the photoluminescence excitation resonance aligns with a higher-order plasmonic cavity mode, which supports strong field gradients. Combining quantum chemistry calculations with electromagnetic simulations reveals an important interplay between the Franck-Condon quadrupole and Herzberg-Teller dipole contributions in governing the absorption characteristics of this dark transition. In contrast to free space, the quadrupole moment plays a significant role in photoluminescence enhancement within nanoparticle-on-mirror cavities. These findings provide an approach to access optically inactive transitions, promising advancements in spectroscopy and sensing applications. [Full article]

Print Friendly, PDF & Email